If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6y^2-30y+30=0
a = 6; b = -30; c = +30;
Δ = b2-4ac
Δ = -302-4·6·30
Δ = 180
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{180}=\sqrt{36*5}=\sqrt{36}*\sqrt{5}=6\sqrt{5}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-30)-6\sqrt{5}}{2*6}=\frac{30-6\sqrt{5}}{12} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-30)+6\sqrt{5}}{2*6}=\frac{30+6\sqrt{5}}{12} $
| 2/3+6t=8t-4/21 | | 3x-5(x-5)=-33+2x+12 | | 14c-9c=15 | | 75-t=70 | | -3*14x=12 | | 105=5(1-5x) | | -3d*(-4)=2 | | 180-(4x-30)=x | | X(2/3)+6=X(1/2)+x(1/4) | | 176=4x-2(-5x-18) | | x=8/9-1/4 | | 7x+18÷-6=4 | | 4s+-7s-4s=-14 | | 4/x+9=2/7 | | t^2+4=-4t | | b-52=17 | | 3x+30×30=1260 | | 3(5x-2)=-3(x+12) | | 18=2m+6-5m | | -5(8-7x)-(1-x)=5(x-5) | | 81-p=80 | | 1-(y-6)=2(5-2y) | | x-1=4x+4x-8 | | -(9-4a)-(7+3a)-9=-(8-5a)+(-a)+7 | | 2=20000/5x | | X^-2x-8=0 | | 8(y+2)=2(3y | | Y^2-2y-11=0 | | 13/3+1/7t=8 | | z2-9z+14=0 | | x+3/12=7/2 | | -3(-13+1.666667b)+56+5b+85=180 |